49 research outputs found

    Relay-assisted Multiple Access with Full-duplex Multi-Packet Reception

    Full text link
    The effect of full-duplex cooperative relaying in a random access multiuser network is investigated here. First, we model the self-interference incurred due to full-duplex operation, assuming multi-packet reception capabilities for both the relay and the destination node. Traffic at the source nodes is considered saturated and the cooperative relay, which does not have packets of its own, stores a source packet that it receives successfully in its queue when the transmission to the destination has failed. We obtain analytical expressions for key performance metrics at the relay, such as arrival and service rates, stability conditions, and average queue length, as functions of the transmission probabilities, the self interference coefficient, and the links' outage probabilities. Furthermore, we study the impact of the relay node and the self-interference coefficient on the per-user and aggregate throughput, and the average delay per packet. We show that perfect self-interference cancelation plays a crucial role when the SINR threshold is small, since it may result to worse performance in throughput and delay comparing with the half-duplex case. This is because perfect self-interference cancelation can cause an unstable queue at the relay under some conditions.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Effect of Energy Harvesting on Stable Throughput in Cooperative Relay Systems

    Full text link
    In this paper, the impact of energy constraints on a two-hop network with a source, a relay and a destination under random medium access is studied. A collision channel with erasures is considered, and the source and the relay nodes have energy harvesting capabilities and an unlimited battery to store the harvested energy. Additionally, the source and the relay node have external traffic arrivals and the relay forwards a fraction of the source node's traffic to the destination; the cooperation is performed at the network level. An inner and an outer bound of the stability region for a given transmission probability vector are obtained. Then, the closure of the inner and the outer bound is obtained separately and they turn out to be identical. This work is not only a step in connecting information theory and networking, by studying the maximum stable throughput region metric but also it taps the relatively unexplored and important domain of energy harvesting and assesses the effect of that on this important measure.Comment: 20 pages, 4 figure

    Network-Level Cooperation in Energy Harvesting Wireless Networks

    No full text
    International audienceWe consider a two-hop communication network consisted of a source node, a relay and a destination node in which the source and the relay node have external traffic arrivals. The relay forwards a fraction of the source node's traffic to the destination and the cooperation is performed at the network level. In addition, both source and relay nodes have energy harvesting capabilities and an unlimited battery to store the harvested energy. We study the impact of the energy constraints on the stability region. Specifically, we provide inner and outer bounds on the stability region of the two-hop network with energy harvesting source and relay

    Hierarchical conditional dependency graphs as a unifying design representation in the CODESIS high-level synthesis system

    Get PDF
    International audienceIn high-level hardware synthesis (HLS), there is a gap in the quality of the synthesized results between data-flow and control-flow dominated behavioral descriptions. Heuristics destined for the former usually perform poorly on the latter. To close this gap, the CODESIS interactive HLS tool relies on a unifying intermediate design representation and adapted heuristics that are able to accommodate both types of designs, as well as designs of a mixed data-flow and control-flow nature. Preliminary experimental results in mutual exclusiveness detection and in efficiently scheduling conditional behaviors, are encouraging and prompt for more extensive experimentation

    Coded ResNeXt: a network for designing disentangled information paths

    Full text link
    To avoid treating neural networks as highly complex black boxes, the deep learning research community has tried to build interpretable models allowing humans to understand the decisions taken by the model. Unfortunately, the focus is mostly on manipulating only the very high-level features associated with the last layers. In this work, we look at neural network architectures for classification in a more general way and introduce an algorithm which defines before the training the paths of the network through which the per-class information flows. We show that using our algorithm we can extract a lighter single-purpose binary classifier for a particular class by removing the parameters that do not participate in the predefined information path of that class, which is approximately 60% of the total parameters. Notably, leveraging coding theory to design the information paths enables us to use intermediate network layers for making early predictions without having to evaluate the full network. We demonstrate that a slightly modified ResNeXt model, trained with our algorithm, can achieve higher classification accuracy on CIFAR-10/100 and ImageNet than the original ResNeXt, while having all the aforementioned properties
    corecore